This article was downloaded by: On: *28 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713646857

Quantitative Structure-property Relationships for Aqueous Solubilities of Halogenated Aromatic Compounds

Terence T. Blair^a; Eric Gifford^b; William E. Acree Jr.^c; Chun-Che Tsai^b ^a Departments of Chemistry and Mathematical Sciences, Kent State University, Kent, Ohio, USA ^b Department of Chemistry, Kent State University, Kent, Ohio, USA ^c Department of Chemistry, University of North Texas, Denton, Texas, USA

To cite this Article Blair, Terence T., Gifford, Eric, Acree Jr., William E. and Tsai, Chun-Che(1992) 'Quantitative Structure-property Relationships for Aqueous Solubilities of Halogenated Aromatic Compounds', Physics and Chemistry of Liquids, 24: 3, 137 – 160

To link to this Article: DOI: 10.1080/00319109208027264 URL: http://dx.doi.org/10.1080/00319109208027264

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phys. Chem. Liq., 1992, Vol. 24, pp. 137–160 Reprints available directly from the publisher Photocopying permitted by license only

QUANTITATIVE STRUCTURE-PROPERTY RELATIONSHIPS FOR AQUEOUS SOLUBILITIES OF HALOGENATED AROMATIC COMPOUNDS

TERENCE T. BLAIR

Departments of Chemistry and Mathematical Sciences, Kent State University, Kent, Ohio 44242-0001, USA

ERIC GIFFORD

Department of Chemistry, Kent State University, Kent, Ohio 44242-0001, USA

WILLIAM E. ACREE, JR.

Department of Chemistry, University of North Texas, Denton, Texas 76203-5068, USA

CHUN-CHE TSAI

Department of Chemistry, Kent State University, Kent, Ohio 44242-0001, USA

(Received 20 August 1991)

Quantitative structure-property relationships (QSPRs) have been examined for the aqueous solubility of halogenated benzenes, polychlorobiphenyls, polybromobiphenyls, and polychloronaphthalenes at 20 to 25°C. Multiple regression correlations of aqueous mole fraction solubility (X) with molecular size descriptors (molecular weight, total molecular surface area, or various zero-order molecular connectivity indices) and a combined molecular symmetry and structure descriptor (R * Molecular size descriptor) are reported. A generalized correlation takes the form of

log $X = a_0 + a_1$ (Molecular size descriptor)^m + a_2 (MP - 25) + a_3 (R * Molecular size descriptor)

where $1 \le m \le 2$, a_i refers to the *i*th regression coefficient, and *R* is a molecular redundancy index. The best correlation found, from the standpoint of reduced standard deviations and calculational simplicity, does not contain a melting temperature term ($a_2 = 0$). Derived QSPRs enable estimation of aqueous solubilities based solely on structural information.

KEY WORDS: Molecular connectivity indices; halogenated aromatics; polyhalogenated biphenyls; QSPR; water solubility.

INTRODUCTION

A number of investigators have addressed the problem of correlating and predicting the solubilities of polycyclic aromatic hydrocarbons (PAHs), halogenated benzenes (HBs), polychlorinated biphenyls (PCBs), polycyclic aromatic hetero-atom compounds, and other organic nonelectrolytes in both aqueous and aqueous-organic solvent media. Development of a model which provides a semi-quantitative means of predicting the solubility of a given PAH or PCB is of importance considering the well-documented carcinogenic activity of these classes of compounds, particularly in light of the frequent danger imposed by the pollution of natural waterways by petroleum hydrocarbons and toxic wastes. Numerous linear and multivariate regression equations have been published expressing the logarithm of the aqueous mole fraction solubility (or molar solubility) as a function of empirically derived quantities such as van der Waals volumes¹⁻⁵, total molecular and group surface areas¹⁻⁹, molecular weight^{2,4}, and a variety of other molecular connectivity and topological indices¹⁰⁻¹². For nonpolar solutes, molecular size descriptors provide a rough measure of the energy required to create a solvent cavity wherein a solute molecule. or possibly, an aggregation of solute molecules would reside. As water is a highly structured solvent, the number of hydrogen bonds that must be broken is directly proportional to the size of the dissolved solute. Secondary considerations involve the energetics of breaking solute-solute interactions, which depends on the types of functional groups present in the molecule, and in the case of crystalline materials, is reflected in the magnitude of the enthalpy of fusion and the melting temperature. These, in turn, are partially correlated with molecular symmetry.

On a more fundamental level, the ability to predict accurately the aqueous solubility of a given molecule will require a more detailed understanding of the exact nature of solute-water interactions at the molecular level than simple molecular-size correlations would be expected to evince. Precise theoretical treatment of the collisional and electrostatic interactions extant in the solution phase, however, proves to be enormously tedious and far too complex to be feasible at the present time. A far simpler approach to this problem, which has found widespread application in environmental sciences, would be to systematically examine quantitative structure-property relationships (QSPRs) between aqueous solubility and measurable/calculable solute properties in hopes of developing better predictive methods with applicability to both nonpolar and polar solutes. Published equations are generally limited in application to a select number of compounds within a narrow family subclass, and little effort is made to extend the derived correlations to the more polar compounds where hydrogen-bonding plays a major role in governing aqueous solubility.

As an initial step in developing a generalized solubility expression, we documented over sixty multiple regression correlations between aqueous mole fractions solubility (X) and molecular size descriptor (total molecular surface area, total group surface area, molecular volume or molecular weight), melting temperature (MP) and a combined molecular symmetry and structure descriptor (R * Molecular size descriptor) for 25 PAHs and 42 HBs^{2.4}. A generalized correlation took the form:

$$\log X = a_0 + a_1 \text{ (Molecular size descriptor)}^m + a_2(MP - 25) + a_3(R * Molecular size descriptor)$$
(1)

where $1 \le m \le 2$, a_i refers to the *i*th regressional coefficient determined via least

squares analysis of available experimental solubility data, and R is a molecular redundancy index. Note that in the case of liquid solutes, the breaking of the crystalline lattice is not required and, thus the (MP – 25) correctional term in Eq. 1 is set equal to zero. Table lists a_i coefficients for three of our earlier two-parameter correlations (Eqs. 8, 9, and 11), along with similar equations published in the literature. Also included are the molecular size descriptors employed and statistical correlation coefficients (r^2) and F-values. The generalized correlation expression enables estimation of aqueous PAH and HB solubility to within a factor of two, in most cases using only melting temperatures and structural information as input data. More importantly, the correlations did provide very reasonable predictions for several solutes not included in the original regression analysis and, in the HB study, it was possible to remove the melting temperature term, with only a slight loss in predictive accuracy, in favor of R times the total halogen surface area (TSAX):⁴

 $\log X = -1.61 - 1.49 (TSA)^2 - 1.59 (R * TSAX)$ (2) MSE = 0.131 $r^2 = 0.993$ F(2, 25) = 1891

Successful prediction of PAH and HB solubilities suggests that the generalized correlation expression may be applicable to much larger subsets of aromatic hydrocarbons, and might eventually provide a suitable foundation for estimating the "nonpolar size contributions" to the aqueous solubility of polar, hydrogen-bonding organic solutes. To pursue these ideas further, we extend our previous correlations to include nearly planar polychloronaphthalenes (PCNs), and both polychlorinated (PCBs) and polybrominated biphenyls (PBBs). These three chemical subclasses were selected primarily because: (1) various structural isomers provide the opportunity to study aqueous solubility as a function of molecular symmetry; (2) the substituent groups (which, in this case, are the halogen atoms) are nonpolar in nature and interactions between the dissolved solute and surrounding water molecules should not involve hydrogen bonding; (3) sufficient aqueous solubility data exists so that the PCNs, PCBs, and PBBs can be regressed singly or as one combined data set; (4) x-ray crystallographic data¹³⁻¹⁹ reveals that the "interplanar dihedral twist angle" of PCBs/PBBs depends to a large extent on the substitution pattern at the 2, 2', 6, and 6' carbon positions; and (5) molecular redundancy indices are extremely sensitive to the molecular configuration assumed. The R value of any given biphenyl derivative having a perpendicular set of phenyl rings will not necessarily be equal to the value based on a planar conformation. It will be informative to ascertain how effective the a_3 (R * Molecular size descriptor) term is in eliminating the a_2 (MP - 25) term and what PCB/PBB conformation is preferred in the molecular redundancy computation.

In addition, we have explored the reasonability of using various molecular connectivity indices as molecular size descriptors. From a computational standpoint, molecular connectivity indices are easier to calculate than surface areas or molecular volumes, and they eliminate all ambiguities regarding which total molecular surface area (TSA) or hydrated molecular surface area (HSA) represents the "best" measure of solute size in aqueous systems. The numerical TSA or HSA value generated from

2011
January
28
08:26
At:
Downloaded

equations
regression
Literature
Table 1

Eqn.	Series	Log	MP25	MW	TSA	^	cl n	Const	MSE	r ²	Ũ4	Ref.
I		of	×10 ⁻²		(planar)							
(8)	HB	×	-1.69	-0.865				-3.24	0.534	0.890	102	4
			(0.49)	(016.0)				(09.0)			(2,25)	
(6)	EH	×	-1.01		-4.10			1.04	0.151	0.991	1424	4
			(0.16)		(0.32)			(0.46)			(2,25)	
(10)	HB H	s	-1.03		-0.0423			3.30		966.0		-1
											(2,32)	
(11)	ЯH	×	-1.03			-42.6		-0.01	0.141	0.992	1614	4
			(0.15)			(3.1)		(0.35)			(2.25)	
(12)	HB	S	-0.95			-0.0482		2.67		0.918		-1
											(2,23)	
(13)	PCB	S					-0.47	-1.40				
											(1,42)	
(14)	PCB	Ś	-qns		-0.0352			4.82	0.370	0.850		6
			cooled								(1,165)	
1911	800	≻	-due		0.115			-11.687		0.897	412	S
(CT)	rca L	•	cooled								(1,115)	
(16)	PCB	×	-qns			0.089		-4.405		0.980	758	S
			cooled								(1,115)	

the number of computational approaches depends on the method used to treat intersecting atomic spheres and how many layers of solvational water molecules are included in the surface area computation. $^{20-25}$

MATERIALS AND METHODS

Mole fraction solubilities at 20 to 25°C for the 42 halogenated benzenes, 167 polychlorobiphenyls, 6 polybromobiphenyls, and 17 polychloronaphthalenes are summarized in Tables 2 to 5. Every effort was made to reference primary literature sources to eliminate any typesetting errors that might be present in published solubility compilations. Unfortunately, compiled values had to be used in a few instances because an original literature source could not be found or was not readily available, although these should be reliable, as most compiling authors critically evaluated their tabulated data against various QSPR correlations. Measured solubility data at 20°C or room temperature was also included so that more isomers could be examined. Errors introduced from using the lower-temperature solubilities are expected to be comparable in magnitude to the standard deviations (maximum error of about $\pm 20\%$) which were computed whenever multiple, independent literature values were averaged. The numerical values listed for log X represent either a single determination or an arithmetic average, if more than one experimental data point was found in the literature. Any values outside a two standard deviation boundary were rejected from the data set before averaging.

Where possible, melting temperatures are included in Tables 2 to 5. As the scatter in the data is at times large, a 15° C range for one compound, and we were attempting to find an alternative to the use of the melting temperature, when it is not available, we simply choose a representative value for inclusion in the tables.

As in an earlier paper², we define the molecular redundancy index (R) as the following:

$$R = \frac{\sum_{i=1}^{k} n_i \log n_i}{N \log N} \tag{3}$$

where n_i is the number of atoms in the *i*th atom set, *i* is the number of different atom sets, and $N = \sum_{i=1}^{k} n_i$ is the total number of atoms in the molecule. Determination of *R* values is relatively straightforward, particularly in the case of the halogenated benzenes and polychloronaphthalenes, since all atoms are fixed in space by a single, rigid aromatic base ring. Substituted biphenyl derivatives, on the other hand, exhibit free rotation about the lone C—C single bond, and the actual molecular conformation of any given PCB/PBB depends on steric hindrance created by the halogen atom substitution pattern at the 2, 2', 6 and 6' carbon positions. X-ray crystallographic data indicates that the parent biphenyl molecule is nearly planar²⁶, and placement of one, two, or four large chlorine atoms at any of the four positions increases the twist angle from 0° to about 45°, 60°, and 90°, respectively¹³⁻¹⁹. To illustrate calculation of molecular redundancy indices, we consider 2-chlorobiphenyl as a

Molecular	Name	10	YA	MU	мра	
Formula	14ame	R	~~		mP	
СбНб	Benzene	0.7211	4.0000	78.1	5.5	
0(115 5	Diversion	0 10/0				
COHSE	Fluorobenzene	0.1860	4.1190	96.1	-41.2	
Consci	Chioropenzene	0.1860	4.2619	112.6	-45.5	
Сбизвг	Bromobenzene	0.1860	4.4048	157.0	-30.8	
C6H5I	Iodobenzene	0.1860	4.5476	204.0	-31.3	
C6H4F2	1,2-Difluorobenzene	0.2789	4.2381	114.1	-34.0	
C6H4C12	1,2-Dichlorobenzene	0.2789	4.5238	147.0	-17.0	
C6H4Br2	1,2-Dibromobenzene	0.2789	4.8095	235.9	7.1	
C6H4I2	1,2-Diiodobenzene	0.2789	5.0952	329.9	27.0	
C6H4F2	1,3-Difluorobenzene	0.1860	4.2381	114.1	L	
C6H4C12	1,3-Dichlorobenzene	0.1860	4.5238	147.0	-24.7	
C6H4Br2	1,3-Dibromobenzene	0.1860	4.8095	235.9	-7.0	
C6H412	1,3-Diiodobenzene	0.1860	5.0952	329.9	40.0	
C6H4F2	1,4-Difluorobenzene	0.4649	4.2381	114.1	-13.0	
C6H4C12	1.4-Dichlorobenzene	0.4649	4.5238	147.0	53.1	
C6H4Br2	1.4-Dibromobenzene	0.4649	4.8095	235.9	87.3	
C6H4T2	1 A-Dijodobenzene	0.4649	5 0952	329 9	131 5	
CENTER	1 2 3-Trifluorobenzene	0.1960	A 3571	132 1	1.	
C683013	2 2 3-Mrighlorobenzene	0.1000	1.33/1	101 6	52 5	
CONSCIS	1,2,3-Trichtorobenzene	0.1000	4.7037	214 0	07 0	
CONSELS	1,2,3-Tribromobenzene	0.1860	5.2143	314.8	0/.0	
COHSIS	1,2,3-Tr110dobenzene	0.1860	5.6429	455.8	116.0	
C6H3F3	1,2,4-Trifluorobenzene	0.0000	4.3571	132.1	L.	
C6H3C13	1,2,4-Trichlorobenzene	0.0000	4.7857	181.5	17.0	
C6H3Br3	1,2,4-Tribromobenzene	0.0000	5.2143	314.8	44.5	
C6H3I3	1,2,4-Triiodobenzene	0.0000	5.6429	455.8	91.5	
C6H3F3	1,3,5-Trifluorobenzene	0.4421	4.3571	132.1	-5.5	
C6H3C13	1,3,5-Trichlorobenzene	0.4421	4.7857	181.5	63.5	
C6H3Br3	1,3,5-Tribromobenzene	0.4421	5.2143	314.8	122.0	
C6H3I3	1,3,5-Triiodobenzene	0.4421	5.6429	455.8	184.2	
C6H2F4	1,2,3,4-Tetrafluorobenzene	0.2789	4.4762	150.1	L	
C6H2C14	1,2,3,4-Tetrachlorobenzene	0.2789	5.0476	215.9	47.5	
C6H2Br4	1,2,3,4-Tetrabromobenzene	0.2789	5.6190	393.7	62.5	
C6H2T4	1.2.3.4-Tetraiodobenzene	0.2789	6.1905	581.7	136.0	
C6H2E4	1.2.3.5-Tetrafluorobenzene	0.1860	4.4762	150.1	L	
C6H2C14	1,2,3,5-Tetrachlorobenzene	0.1860	5.0476	215.9	54.5	
C6H2Br4	1 2 3 5-Tetrabromobenzene	0 1860	5.6190	393.7	99.5	
C6H2T4	1 2 3 5-Tetraiodobenzene	0 1860	6 1905	581.7	148.0	
061254	1,2,3,5 Tetrafluorobongono	0 4649	A 4762	150 1	4 0	
CONZEN	1,2,4,5-retraridorobenzene	0.4049	5 0475	215 0	140 0	
Conzela	1,2,4,5-Tetrachtorobenzene	0.4049	5.0470	213.3	192.0	
C6H2BT4	1,2,4,5-Tetrabromobenzene	0.4649	5.6190	593.7	102.0	
C6H214	1,2,4,5-Tetralodobenzene	0.4649	6.1905	281.1	254.0	
C6HF5	Pentafluorobenzene	0.1860	4.5952	168.1	-48.0	
C6HC15	Pentachlorobenzene	0.1860	5.3095	250.3	86.0	
C6HBr5	Pentabromobenzene	0.1860	6.0238	472.6	160.5	
C6H15	Pentalodobenzene	0.1860	6.7381	707.6	172.0	
C6F6	Hexafluorobenzene	0.7211	4,7143	186.1	5.3	
C6C16	Hexachlorobenzene	0.7211	5.5714	284.8	230.0	
C6Br6	Hexabromobenzene	0.7211	6.4286	551.5	327.0	
C616	Hexaiodobenzene	0.7211	7.2857	833.5	350.0	
C6H4FI	1-Fluoro-4-iodobenzene	0.1860	4.6667	222.0	-18.0	
C6H4C1F	1-Chloro-2-fluorobenzene	0.0000	4.3810	130.6	-43.0	
C6H4C1F	1-Chloro-3-fluorobenzene	0.0000	4.3810	130.6	-4.1	
C6H4BrF	1-Bromo-2-fluorobenzene	0.0000	4.5238	175.0	L	
C6H4BrF	1-Bromo-3-fluorobenzene	0.0000	4.5238	175.0	L	
C6H4BrC1	1-Bromo-2-chlorobenzene	0.0000	4.6667	191.5	-12.3	
C6H4BrCl	l-Bromo-3-chlorobenzene	0.0000	4.6667	191.5	-21.5	
C6H4BrCl	1-Bromo-4-chlorobenzene	0 1860	4 6667	191 5	68 0	
C6H4BrT	1-Bromo-4-10dobangana	0.1860	4.9524	282 9	92.0	
C6H4C1T	1-Chloro-2-lodobenzene	0.0000	4.8095	238 5	1.0	
CEHACIT	1-Chloro-3-lodobonzene	0.0000	4 80055	238 5	25 0	
CONNELL	1-Chloro-A-iodobenzene	0.0000	4 0095	739 5	57 0	
CECIES	Chloropontafluoroborcore	0.1000	4 951	200.0	J/.U T.	
COULES	Chrotopencartuoropenzene	0.1000	1.03/1			
a Values	averaged from Ref. 71. L =	liquid.			• • ·	aa a-
b -LX ≠ -	(log X). The solubilities	were det	ermined	between	20 and	30 °C.

Table 2a Halogenated benzenes-Summary

c A '@' indicates value used in the solubility prediction for this column.

Name	n	-LXD	SD	-LXC	-LX	Ref.
	obs	avg	-	(eq 36)(eq 37)	
Benzene	19	3.38	0.016	3.200	3.11	31, 34, 35, 36, 37, 38, 39, 40, 41, 42,
						43,44,45,46,47,48,49,50,51
Fluorobenzene	3	3.53	0.006	3.560	3.47	31,52,53
Chlorobenzene	11	4.17	0.105	3,970	3.89	30, 31, 34, 41, 43, 50, 53, 54, 55, 56, 57
Bromobenzene	5	4.30	0.044	4.3/8	4.29	J1, 34, 39, 43, 33,00 31, 43, 52, 53, 55
1.2-Difluorobenzene	ĩ	3.74	0.107	3.904	3.82	31
1,2-Dichlorobenzene	2	4.83	0.133	4.698	4.62	30,31,48,53,56,58,59
1,2-Dibromobenzene	1	5.24		5.43@	5.37	31
1,2-Diiodobenzene	1	5.99		6.130	6.07	31
1,3-Difluorobenzene	1	3.74		3.908	3.82	31
1,3-Dichlorobenzene	8	4.79	0.033	4.690	4.62	30,31,46,48,50,56,58,59
1,3-Dibromobenzene	1	5.12		5.43@	5.37	31
1,3-Difluorehensene	1	0.31		0.136	5.07	31 .
1.4-Dichlorobenzene	ō	5 00	0 032	J.90e	4 88	31.34 43 48.53.54.58 60 61
1.4-Dibromohenzene	5	5.81	0.052	6.044	5.95	31,53
1,4-Diiodobenzene	2	7.05		7.160	7.06	31,53
1,2,3-Trifluorobenzene	0			4.24	4.16	
1,2,3-Trichlorobenzene	6	5.77	0.151	5.650	5.57	30,31,50,56,61,62
1,2,3-Tribromobenzene	0			7.02	6.94	
1,2,3-Triiodobenzene	-0			8.25	8.17	
1,2,4-Trifluorobenzene	0	c 20		4.24	4.16	20 31 50 54 50 43
1,2,4-Trichiorobenzene	1	5.38	0.078	5.3/6	5.31	30,31,50,50,59,63
1,2,4-Triiodobenzene	ň	0.24		8.01	7.94	31
1,3,5-Trifluorobenzene	ō			4.24	4.16	
1,3,5-Trichlorobenzene	5	6.23	0.170	5.740	5.67	30,31,50,56,62
1,3,5-Tribromobenzene	2	7.34		7.350	7.26	31,71
1,3,5-Triiodobenzene	0			8.91	8.80	
1,2,3,4-Tetrafluorobenzene	0			4.56	4.49	
1,2,3,4-Tetrachlorobenzene	5	6.15	0.196	6.010	5.96	30,31,50,56,62
1,2,3,4-Tetrabromobenzene	0			1.01	7.62	
1,2,3,4-Tetrafluorobenzene	1	4 05		4 56	9,49 A AQ	4
1,2,3,5-Tetrachlorobenzene	7	6.52	0.089	6.300	6.23	30.31.48.50.56.58.62
1,2,3,5-Tetrabromobenzene	ò			8.03	7.96	
1,2,3,5-Tetraiodobenzene	0			9.68	9.60	
1,2,4,5-Tetrafluorobenzene	1	4.12		4.56	4.49	4
1,2,4,5-Tetrachlorobenzene	6	7.15	0.357	7.13@	7.03	30,31,50,56,64,65
1,2,4,5-Tetrabromobenzene	Ť	8.72		8.84	8.73	16
1,2,4,5-Tetralodobenzene Rentafluorobenzene	0			10.71	10.39	
Pentachlorobenzene	6	7 23	0 212	7 220	7.15	30.31.48.50.58.62
Pentabromobenzene	ŏ		•••••	9.47	9.38	
Pentaiodobenzene	Ō			10.93	10.86	
Hexafluorobenzene	0			5.19	5.12	
Hexachlorobenzene	7	9.18	0.456	9.200	9.07	30, 31, 50, 67, 68, 69, 70
Hexabromobenzene	1	11.48		11.88	11.73	64
Hexalodobenzene	0			13.61	13.47	
1-Fluoro-4-iodobenzene	1	4.87		5.06	5.00	4
1-Chloro-2-fluorobenzene	1	4.16		4.30	4.23	4
1-Bromo-2-fluorobenzene	1	4.09		4.30	4.23	4
1-Bromo-3-fluorobenzene	î	4.41		4.69	4,62	4
1-Bromo-2-chlorobenzene	ī	4.93		5.06	5.00	31
1-Bromo-3-chlorobenzene	1	4.95		5.06	5.00	31
1-Bromo-4-chlorobenzene	1	5.37		5.48	5.40	31
1-BIOMO-4-10dObenzene	1	6.30		5 44 5 42	6.35	31 21
1-Chloro-3-lodobenzene	1	5,20		5.43	5,37	31
1-Chloro-4-iodobenzene	ī	5.77		5.74	5.67	31
Chloropentafluorobenzene	٥			5.55	5.49	

Table 2b	Halogenated	benzenes-Summary
----------	-------------	------------------

a Values averaged from Ref. 71. L = liquid. b -LX = $-(\log X)$. The solubilities were determined between 20 and 30 °C. c A '@' indicates value used in the solubility prediction for this column.

Table 3a Polychlorinated biphenyls—Summary

NUM" NAME R XA	MW MP*
0 DEDUDING 0 2022 2 (((164 311 81
U BIPHENYL U.38/3 /.666	154.211 71.0
2 3-CHLOROBIPHENIL 0.0015 7.920	100.000 34.0
3 4-CHLOROBIPHENYL 0.1631 7.928	188.656 77.
4 2,2'-DICHLOROBIPHENYL 0.2242 8.190	223.101 60.
5 2,3-DICHLOROBIPHENYL 0.0815 8.190	5 223.101 28.0
6 2,3'-DICHLOROBIPHENYL 0.0000 8.190	223.101 Oi
7 ² ,4-DICHLOROBIPHENYL 0.0815 8.190	223.101 24.
6 2,4 -DICHLOROBIPHENYL 0.0815 8.190	223.101 40.1
	223.101 25.
11 3.3'-DICHLOROBIPHENYL 0.2242 8 190	5 223.101 29.1
12 3,4-DICHLOROBIPHENYL 0,0815 8,190	5 223.101 49.
13 3,4'-DICHLOROBIPHENYL 0.0815 8.190	223.101 Oi
14 3,5-DICHLOROBIPHENYL 0.1631 8.190	5 223.101 36.
15 4,4'-DICHLOROBIPHENYL 0.3873 8.198	223.101 148.
16 2,2',3-TRICHLOROBIPHENYL 0.0000 8.452	257.546 28.
17 2,2',4-TRICHLOROBIPHENYL 0.0000 8.452	4 257.546
18 2,2',5-TRICHLOROBIPHENYL 0.0000 8.452	4 257.546 43.
20 2 3 3'-TRICHLOROBIPHENYL 0.0013 8.452	4 257 546 42
21 2.3.4-TRICHLOROBITHENTL 0.0815 8.452	4 257.546 101.
22 2, 3, 4'-TRICHLOROBIPHENYL 0.0815 8,452	4 257.546 73.
23 2,3,5-TRICHLOROBIPHENYL 0.0815 8.452	4 257.546 41.
24 2,3,6-TRICHLOROBIPHENYL 0.0815 8.452	4 257.546 .
25 2,3',4-TRICHLOROBIPHENYL 0.0000 8.452	4 257.546 .
26 2,3',5-TRICHLOROBIPHENYL 0.0000 8.452	4 257.546 40.
27 2,3',6-TRICHLOROBIPHENYL 0.0815 8.452	4 257.546
28 2,4,4'-TRICHLOROBIPHENYL 0.0815 8.452	4 25/.540 50. A 257 546 '79
20 2 4 5-0010000000000000000000000000000000000	4 257 546 781 4 257 546 62
31 2.4'.5-TRICHLOROBIPHENTL 0.0815 8.452	4 257.546 67.
32 2.4',6-TRICHLOROBIPHENYL 0.1631 8.452	4 257.546 .
33 2', 3, 4-TRICHLOROBIPHENYL 0.0000 8.452	4 257.546 65.
34 2', 3, 5-TRICHLOROBIPHENYL 0.0815 8.453	4 257.546 58.
35 3,3',4-TRICHLOROBIPHENYL 0.0000 8.452	4 257.546 62.
36 3,3',5-TRICHLOROBIPHENYL 0.0815 8.45	4 257.546
37 3,4,4'-TRICHLOROBIPHENYL 0.0815 8.45	4 257.546 87.
38 3,4,5-TRICHLOROBIPHENYL 0.1631 8.45	4 237.340 . A 257 546 88
$39 3,4^{\circ},5^{-}TRICHLOROBIPHENYL 0.1051 0.45$	3 291 991 120.
4) 2,2',3,5 TETRACHLOROBIPHENTL 0.0000 8.71	3 291.991
42 2,2',3,4'-TETRACHLOROBIPHENYL 0.0000 8.71	3 291.991 69.
43 2,2',3,5-TETRACHLOROBIPHENYL 0.0000 8.71	3 291.991
44 2,2',3,5'-TETRACHLOROBIPHENYL 0.0000 8.71	3 291.991 46.
45 2,2',3,6-TETRACHLOROBIPHENYL 0.0000 8.71	3 291.991
46 2,2',3,6'-TETRACHLOROBIPHENYL 0.0815 8.71	3 291.991
47 2,2',4,4'-TETRACHLOROBIPHENYL 0.2242 8.71	3 291.991 83.
48 2,2',4,5"TETRACHLOROBIPHENIL 0.0000 0.71	3 291.991 00
47 2,2,4,5 TEIRRCHEOROBIFHENTE 0.0000 0.71	
50 2,2',4,6-TETRACHLOROBIPHENYL 0.0815 8./1	13 201 001
51 2, 2', 4, 6' + TETRACHLOROBIPHENYL 0.0013 0.71	3 291.991 88
53 2.2', 5.6'-TETRACHLOROBIPHENIL 0.0815 8.71	3 291.991 103
54 2,2',6,6'-TETRACHLOROBIPHENYL 0.3873 8.71	3 291.991 198
55 2,3,3',4-TETRACHLOROBIPHENYL 0.0000 8.71	13 291.991
56 2,3,3',4'-TETRACHLOROBIPHENYL 0.0000 8.71	13 291.991 96
57 2,3,3',5-TETRACHLOROBIPHENYL 0.0000 8.71	13 291.991 13 291.991
58 2,3,3',5'-TETRACHLOROBIPHENYL 0.0815 8,71	43 201 001 43 731'331 150
59 2,3,3',6-TETRACHLOROBIPHENYL 0.0000 8./1	13 291,991 142
61 - 2 + 3 + 4 + 4 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	43 291.991 92
62 2.3.4.6-TETRACHLOROBIPHENVL 0.0815 8.71	43 291.991
63 2.3.4',5-TETRACHLOROBIPHENYL 0.0815 8.71	43 291.991 104
64 2,3,4',6-TETRACHLOROBIPHENYL 0.0815 8.71	43 291.991
65 2,3,5,6-TETRACHLOROBIPHENYL 0.1631 8.71	43 291.991 79

 Table 3a
 (continued)

NUMa	NAME	R	XA	MW	MPb
66	2,3 ⁺ ,4,4 ⁺ -TETRACHLOROBIPHENYL	0.0000	8.7143	291.991	127.3
67	2,3',4,5-TETRACHLOROBIPHENYL	0.0000	8.7143	291.991	•
00	2,3',4,5 TEIRACHLOROBIPHENIL 2,3',4,6-TETRACHLOROBIPHENIL	0.0815	0./143 R 71/3	291.991	•
70	2.3'.4'.5-TETRACHLOROBIPHENYL	0.0000	8.7143	291.991	104.0
71	2,3',4',6-TETRACHLOROBIPHENYL	0.0815	8.7143	291.991	
72	2,3',5,5'-TETRACHLOROBIPHENYL	0.0815	8.7143	291.991	106.0
73	2,3',5',6-TETRACHLOROBIPHENYL	0.1631	8.7143	291.991	•
74	2,4,4',5-TETRACHLOROBIPHENYL	0.0815	8.7143	291.991	125.0
75	2,4,4,6-TETRACHLOROBIPHENYL	0.1631	8.7143	291.991	•
70		0.0815	0./143	291.991	102.0
78	3.3'.4.5-TETRACHLOROBIPHENYL	0.0815	8.7143	291.991	103.0
79	3,3',4,5'-TETRACHLOROBIPHENYL	0.0815	8.7143	291.991	119.5
80	3,3',5,5'-TETRACHLOROBIPHENYL	0.3873	8.7143	291.991	164.0
81	3,4,4',5-TETRACHLOROBIPHENYL	0.1631	8.7143	291.991	
82	2, 2', 3, 3', 4-PENTACHLOROBIPHENYL	0.0000	8.9762	326.437	119.7
83	2,2',3,3',5-PENTACHLOROBIPHENYL	0.0000	8.9/62	320.437	•
85	2.2', 3.4.4'-PENTACHLOROBIPHENIL	0.0008	8 9762	326.437	•
86	2, 2', 3, 4, 5-PENTACHLOROBIPHENYL	0.0000	8.9762	326.437	99.9
87	2, 2', 3, 4, 5'-PENTACHLOROBIPHENYL	0.0000	8.9762	326.437	112.3
88	2,2',3,4,6-PENTACHLOROBIPHENYL	0.0000	8.9762	326.437	99.9
89	2,2',3,4,6'-PENTACHLOROBIPHENYL	0.0815	8.9762	326.437	•
90	2,2',3,4',5-PENTACHLOROBIPHENYL	0.0000	8.9762	326.437	٠
92	2,2',3,4',0"PENTACHLOROBIPHENYL	0.0000	8.9/62	320.437	•
93	2,2',3,5,6-PENTACHLOROBIPHENYL	0.0815	8.9762	326.437	•
94	2,2',3,5,6'-PENTACHLOROBIPHENYL	0.0815	8.9762	326.437	:
95	2,2',3,5',6-PENTACHLOROBIPHENYL	0.0000	8.9762	326.437	99.2
96	2,2',3,6,6'-PENTACHLOROBIPHENYL	0.0815	8.9762	326.437	•
97	2, 2', 3', 4, 5-PENTACHLOROBIPHENYL	0.0000	8.9762	326.437	81.5
98	2,2', 3', 4, 5-PENTACHLOROBIPHENYL	0.0815	8.9762	326.437	•
100	2,2',4,4',6~PENTACHLOROBIPHENIL	0.0000	8 9762	320.43/	•
101		0.0000	0.0763	226 427	
102	2,2',4,5,6'-PENTACHLOROBIPHENYL	0.0815	8.9762	326.437	77.0
103	2,2',4,5',6-PENTACHLOROBIPHENYL	0.0815	8.9762	326.437	
104	2,2',4,6,6'-PENTACHLOROBIPHENYL	0.1631	8.9762	326.437	•
105	2,3,3',4,4'-PENTACHLOROBIPHENYL	0.0000	8.9762	326.437	103.0
102	2,3,3',4,5-PENTACHLOROBIPHENYL	0.0000	8.9762	326.437	•
108	2,3,3',4', 5'-PENTACHLOROBIPHENYL 2,3,3',4',5'-PENTACHLOPOPTDUENYL	0.0000	8.9/62	320.43/	•
109	2,3,3',4,6-PENTACHLOROBIPHENYL	0.0000	8.9762	326.437	•
110	2,3,3',4',6-PENTACHLOROBIPHENYL	0.0000	8.9762	326.437	
111	2,3,3',5,5'-PENTACHLOROBIPHENYL	0.0815	8.9762	326.437	
112	2, 3, 3', 5, 6-PENTACHLOROBIPHENYL	0.0815	8.9762	326.437	•
113	2,3,3',5',6-PENTACHLOROBIPHENYL	0.0815	8.9762	326,437	
115	2, 3, 4, 4', 5-PENTACHLOROBIPHENIL 2, 3, 4, 4', 6-PENTACHLOROBIPHENVI	0.0815	8 0762	320.43/	98.5
116	2,3,4,5,6-PENTACHLOROBIPHENYL	0.1631	8.9762	326.437	123.0
117	2, 3, 4', 5, 6-PENTACHLOROBIPHENYL	0.1631	8.9762	326.437	
118	2,3',4,4',5-PENTACHLOROBIPHENYL	0.0000	8.9762	326.437	111.5
119	2,3',4,4',6-PENTACHLOROBIPHENYL	0.0815	8.9762	326.437	
120	2,3',4,5,5'-PENTACHLOROBIPHENYL	0.0815	8.9762	326.437	76.9
122	2, 3, 4, 5, 6-PENTACHLOROBIPHENYL	0.1631	8.9762	326.437	•
123	2 , 3, 3 , 4, 3 PENTAUNLONUSIPHENYL 2', 3, 4, 4', 5 PENTAUNI OPOBIDUENVI	0.0815	8 0767	320.43/	•
124	2', 3, 4, 5, 5'-PENTACHLOROBIPHENYL	0.0815	8.9762	326.437	•
125	2', 3, 4, 5, 6'-PENTACHLOROBIPHENYL	0.1631	8.9762	326.437	
126	3, 3', 4, 4', 5-PENTACHLOROBIPHENYL	0.0815	8.9762	326.437	-
127	3, 3', 4, 5, 5'-PENTACHLOROBIPHENYL	0.1631	8.9762	326.437	•
128	2,2',3,3',4,4'-HEXACHLOROBIPHENYL	0.2242	9.2381	360.882	150.0
129	2,2',3,3',4,5-HEXACHLOROBIPHENYL	0.0000	9.2381	360.882	84.9
130	<pre>x, z , j , j , 4, 5 - HEXACHLOROBIPHENYL</pre>	0.0000	9.2381	360.882	•

(continued)

 Table 3a
 (continued)

NUM	NAME	R	XA	MW	MPb
131	2, 2', 3, 3', 4, 6-HEXACHLOROBIPHENYL	0.0000	9.2381	360.882	·
132	2,2',3,3',4,6'-HEXACHLOROBIPHENYL	0.0000	9.2381	360.882	
133	2,2',3,3',5,5'-HEXACHLOROBIPHENYL	0.2242	9.2381	360.882	128.5
134	2,2',3,3',5,6-HEXACHLOROBIPHENYL	0.0815	9.2381	360.882	99.9
135	2, 2', 3, 3', 5, 6' -HEXACHLOROBIPHENYL	0.0000	9.2381	360.882	
130	2, 2', 3, 3', b, b' -HEXACHLOROBIPHENYL	0.2242	9.2381	360.882	114.3
138	2, 2, 3, 4, 4, 5 - REVACHLOROBIPHENIL	0.0000	9.2381	360.002	91 0
139	2,2',3,4,4',6-HEXACHLOROBIPHENYL	0.0000	9 2381	360.882	01.0
140	2, 2', 3, 4, 4', 6'-HEXACHLOROBIPHENYL	0.0815	9.2381	360.882	70.2
141	2,2',3,4,5,5'-HEXACHLOROBIPHENYL	0.0000	9.2381	360.882	•
142	2, 2', 3, 4, 5, 6-HEXACHLOROBIPHENYL	0.0815	9.2381	360.882	135.5
143	2,2',3,4,5,6'-HEXACHLOROBIPHENYL	0.0815	9.2381	360.882	•
144	2,2',3,4,5',6-HEXACHLOROBIPHENYL	0.0000	9.2381	360.882	•
145	2, 2', 3, 4, 6, 6'-HEXACHLOROBIPHENYL	0.0815	9.2381	360.882	•
146	2, 2', 3, 4', 5, 5' ~HEXACHLOROBIPHENYL	0.0000	9.2381	360.882	•
147	2, 2', 3, 4', 5, 6-HEXACHLOROBIPHENYL	0.0815	9.2381	360.882	•
148	2,2',3,4',5,6'-HEXACHLOROBIPHENYL	0.0812	9.2381	360.882	
150	2,2,3,4,5,6-REXACTLOROBIFTENIL 2,2,3,4,6,6-UPYACHIODOBTDUENVI	0.0000	9.2301	360.882	011
150		0.0015	9.2301	340 893	100 6
152		0.0815	9.2381	360.882	100.2
153	2.2'.4.4'.5.5'-HEYACHIODOBTENENTL	0.1031	9.2301	360.882	103.5
154	2,2',4,4',5,6'-HEXACHLOROBITHENTL	0 0815	9.2381	360.882	011
155	2,2',4,4',6,6'-HEXACHLOROBIPHENYL	0.3873	9.2381	360.882	112.5
156	2,3,3',4,4',5-HEXACHLOROBIPHENYL	0.0000	9.2381	360.882	
157	2,3,3',4,4',5'-HEXACHLOROBIPHENYL	0.0815	9.2381	360.882	•
158	2,3,3',4,4',6-HEXACHLOROBIPHENYL	0.0000	9.2381	360.882	•
159	2, 3, 3', 4, 5, 5'-HEXACHLOROBIPHENYL	0.0815	9.2381	360.882	· · · ·
160	2,3,3',4,5,6-HEXACHLOROBIPHENYL	0.0815	9.2381	360.882	98.5
162		0.0815	9.2301	300.082	•
163	2.3.3'.4'.5.6-HEXACHLOROBIPHENVL	0.0815	9.2381	360.882	88.1
164	2, 3, 3', 4', 5', 6-HEXACHLOROBIPHENYL	0.0815	9.2381	360.882	
165	2, 3, 3', 5, 5', 6-HEXACHLOROBIPHENYL	0.1631	9.2381	360.882	•
166	2,3,4,4',5,6-HEXACHLOROBIPHENYL	0.1631	9.2381	360.882	162.5
167	2,3',4,4',5,5'-HEXACHLOROBIPHENYL	0.0815	9.2381	360.882	•
168	2,3',4,4',5',6-HEXACHLOROBIPHENYL	0.1631	9.2381	360.882	110.5
169	3,3',4,4',5,5'-HEXACHLOROBIPHENYL	0.3873	9.2381	360.882	201.5
170	2,2',3,3',4,4',5-HEPTACHLOROBIPHENYL	0.0000	9.5000	395.327	135.0
1/1	2, 2', 3, 3', 4, 4', 6-HEPTACHLOROBIPHENYL	0.0000	9.5000	395.327	122.3
172	2, 2, 3, 3, 4, 5, 5' - HEPTACHLOROBIPHENIL	0.0000	9.5000	393.32/	•
174	2,2',3,3',4,5,6'-HEPTACHLOROBIPHENTL	0.0000	9.5000	395.327	130.6
175	2,2',3,3',4,5',6-HEPTACHLOROBIPHENYL	0.0000	9.5000	395.327	
176	2,2',3,3',4,6,6'-HEPTACHLOROBIPHENYL	0.0000	9.5000	395.327	•
177	2,2',3,3',4',5,6-HEPTACHLOROBIPHENYL	0.0815	9.5000	395.327	•
178	2,2',3,3',5,5',6-HEPTACHLOROBIPHENYL	0.0815	9.5000	395.327	•
179	2,2',3,3',5,6,6'-HEPTACHLOROBIPHENYL	0.0815	9.5000	395.327	
180	2,2',3,4,4',5,5'-HEPTACHLOROBIPHENYL	0.0000	9.5000	393.32/	114.2
101	2,2',3,4,4',5,6-HEPTACHLOROBIPHENIL	0.0015	9.5000	393.327	1525
102	2, 2, 3, 4, 4, 5, 0 -HEPTACHLOROBIPHENIL	0.0813	9.5000	395.327	132.3
184	2, 2', 3, 4, 4', 5', 6' = HEDTACHLOROBIPHENIL	0.0815	9.5000	395.327	
185	2,2',3,4,5,5',6-HEPTACHLOROBIPHENYL	0.0815	9.5000	395.327	148.5
186	2,2',3,4,5,6,6'-HEPTACHLOROBIPHENYL	0.1631	9.5000	395.327	
187	2,2',3,4',5,5',6-HEPTACHLOROBIPHENYL	0.0815	9.5000	395.327	· .
189	2,2',3,4',5,6,6'-HEPTACHLOROBIPHENYL	0.1631	9.5000	395.327	· •
189	2,3,3',4,4',5,5'-HEPTACHLOROBIPHENYL	0.0815	9.5000	395.327	178.0
190	2, 3, 3', 4, 4', 5, 6-HEPTACHLOROBIPHENYL	0.0815	9.5000	25.327 (ריג אמר ו	, 117.0 1
191	2, 3, 3', 4, 4', 5', 5-HEPTACHLOROBIPHENYL	0.0815	9.5000	395,32	, .
197	2,3,3',4',5,5',6-HEPTACHLOROBIPHENYL	0.1631	9,5000	395.321	
194	2, 2', 3, 3', 4, 4', 5, 5'-OCTACHLOROBIPHENYL	0,2242	9.7619	429.77	2 159.0
195	2, 2', 3, 3', 4, 4', 5, 6-OCTACHLOROBIPHENYL	0.0815	9.7619	429.77	2.

Tal	ble	3a ((continued)

NUMa	NAME	R	XA	MW	MPb
196	2.2'.3.3'.4.4'.5'.6-OCTACHLOROBIPHENYL	0.0000	9.7619	429.772	•
197	2.2'.3.3'.4.4'.6.6'-OCTACHLOROBIPHENYL	0.2242	9.7619	429.772	132.0
198	2.2'.3.3'.4.5.5'.6-OCTACHLOROBIPHENYL	0.0815	9.7619	429.772	•
199	2.2'.3.3'.4.5.6.6'-OCTACHLOROBIPHENYL	0.0815	9.7619	429.772	•
200	2.2'.3.3'.4.5'.6.6'-OCTACHLOROBIPHENYL	0.0815	9.7619	429.772	
201	2.2'.3.3'.4'.5.5'.6-OCTACHLOROBIPHENYL	0.0815	9.7619	429.772	•
202	2.2'.3.3'.5.5'.6.6'-OCTACHLOROBIPHENYL	0.3873	9.7619	429.772	161.0
203	2.2'.3.4.4'.5.5'.6-OCTACHLOROBIPHENYL	0.0815	9.7619	429.772	•
204	2.2'.3.4.4'.5.6.6'-OCTACHLOROBIPHENYL	0,1631	9.7619	429.772	•
205	2.3.3'.4.4'.5.5'.6-OCTACHLOROBIPHENYL	0.1631	9.7619	429.772	
206	2,2',3,3',4,4',5,5',6-NONACHLOROBIPHENYL	0.0815	10.0238	464.217	206.0
207	2,2',3,3',4,4',5,6,6'-NONACHLOROBIPHENYL	0.0815	10.0238	464.217	•
208	2,2',3,3',4,5,5',6,6'-NONACHLOROBIPHENYL	0.1631	10.0238	464.217	182.7
209	2.2'.3.3'.4.4'.5.5'.6.6'-DECACHLOROBIPHE	NYL 0.3873	10.2857	498.662	310.0

b Melting points taken from Ref. 78, 90, 91, or from the general literature. c $\sim Lx = -(\log X)$. Solubilities determined between 20 and 25 °C. d A 'g' indicates the compound was used in the solubility prediction for this column.

Oils are treated as liquids.

representative example. In the case of a planar 2-chlorobiphenyl molecule, none of the carbon and hydrogen atoms are truly equivalent, and $R = 22 \log 1/(22 \log 22) = 0$. Rotation of the two phenyl rings by a full 90 degrees to the so-called "perpendicular structure" increases the topological symmetry considerably:

$$R = \frac{4(2\log 2) + 14\log 14}{22\log 22} = 0.0815 \tag{4}$$

because the (2', 6') and (3', 5') carbon and hydrogen atom ordered pairs become equivalent, ie, $C_{2'} = C_{6'}$, $H_{2'} = H_{6'}$, etc. Tabulated R values listed in Table 3 were computed assuming perpendicular benzene rings. It should be noted though, that both sets of R values were tried in the initial regression analysis. The planar geometry proved unsuccessful and was quickly abandoned, as this computation resulted in smaller or zero R values for a number of fairly high melting temperature PCBs such as 2,2',3,3',4,4',5,5',6-nonachlorobiphenyl (MP = 206°C), 2,2',3,4,4',5,6'-heptachlorobiphenyl (MP = 152.5° C) and 2,2'3,4,5,5'6-heptachlorobiphenyl (MP = 148.5° C).

We also consider, as part of this QSPR study, the zero-order molecular connectivity index (χVO), which is calculated from a hydrogen suppressed molecular graph:

$$\chi VO = \sum_{i=1}^{k} (\delta_i^{\nu})^{-1/2}$$
(5)

and $\delta_i^V = (Z^V - h)/(Z - Z^v - 1)$ where h is the count of hydrogen atoms, Z^V is the count of valence electrons and Z is the count of total electrons^{27,28}. We felt the calculated progression in size of the halogen atoms, especially when bonded to an aromatic carbon atom, was more regular than that described by Eq. 5 and developed

NUM ^a	л	-LX ^C	SD	-LX ^d Ref.
	obs	200	02	(eg 58)
		449		(eq 50)
0	11	6.09	0.039	6.54@ 30,37,43,60,64,72,73,74,75,76, 77
1	5	6.29	0.065	6.688 30,33,69,78,79
2	5	6.72	0.292	6.68@ 33,69,77,78,79
3	6	6.96	0.087	6.84@ 33,69,77,70,79,8 0
4	5	7.13	0.214	7.67@ 33,69,78,79,81
5	2	7.01		7.380 78,79
6	2	7.17		7.220 79,82
7	6	7.11	0.167	7.384 33.77.78.79.81.82
8	5	7.14	0.200	7.380 33.69.78.79.83
9	4	7 10	0.233	7.388 30.69.79.81
10	5	2 11	0.235	7 540 5 20 79 70 91
11	2	7.11	0.345	
11	4	1.0/		1.0/6 /9,0T
12	1	8.13		7.388 79
13	1	8,14		7.386 79
14	1	8.48		7.540 79
15	6	8.30	0.142	8.00@ 69,77,78,79,81,84
16	2	7.76		7.860 79,82
17	2	7.99		7.86 79,82
18	5	7.66	0.294	7.860 69,79,81,82,83
19	2	7.58		8.04 79,82
20	0			7.86
21	ī	7 92		8.044.79
22	5	7 77		8 040 70 82
22	2	1.11		0.04e /9,02
23	0			0.04
24	2	8.13		8.04 /9,82
25	2	8.35		7.86 79,82
26	3	7.88	0.130	7.86@ 79,81,82
27	1	8.56		8.04 82
28	5	8.07	0.226	8.04@ 5,69,78,79,81
29	4	8.06	0.109	8.04@ 30,69,77,79
30	4	7.98	0.339	8.21@ 30,79,81,85
31	3	8.08	0.143	8.048 5,64,79
32	1	7.95		8.21 79
33	3	8.08	0.157	7.884 78.79.82
34	1	8.04		8.040 79
25	ō			7 88
36	ĩ	0 20		8 04 70
27	5	0 00	0 450	8 044 78 79 82
37	2	0.00	0.430	
38				0.21
39	U			8.21
40	5	8.51	0.383	8.958 78,79,81,82,80
41	1	8.75		8.50 79
42	2	8.56		8.500 79,82
43	1	7.97		8.50 87
44	5	8.24	0.263	8.50# 77,78,79,82,86
45	2	8.10		8.50 79,86
46	3	8.12	0.074	8.66 79.82.86
47	4	8.51	0.330	8.954 5.78,79,86
48	3	8.77	0.199	8.504 79.82.88
40	4	8.59	0.400	B.504 30.79.82.86
	•			
50	1	8.68		8.66 79
51	1	8.39		8.66 79
52	6	8.57	0.343	3 8.95e 5,78,79,81,83,86
53	З	8.36	0.181	8.66 79,81,82
54	3	8.95	0.929	9.280 5,79,81
55	Ō	_		8.50
56	ĭ	8.21		8,50 79
57	ñ			8.50
58	0			8.66
59	0			R 50
60	ů,	0 77		0.30 0.460 TO 04
61	2	8.37	0 10	0.0000 /3,00 0 0 660 30 60 37 30 61
6.2	5	8.98	0.150	n 0.006 30'03'11'12'0r
02	0	_		8.66
0.5	2	8.65		8.66 79,82
64	2	8.50		8.66 79,82
65	1	8,99		8.834 79

Table 3b Polychlorinated biphenyls--Summary

148

Table 3b (continued)

NUM ^a	n	-LX ^C	SD	-LX ^d Ref.
	005	avy		
66 67	4	8.42	0.179	8.508 78,79,82,86 A 50 79
68	1	0.0/		8.66
69	1	9.01		8.66 79
70	3	8.42	0.196	8,50@ 78,79,86
71	1	8.76		8.66 79
72	0			8.66
13	U	0 10	0 255	8.83 8.668 79.82 86
75		8 68	0.230	8.83 79.81
76	ī	8.45		8.66 79
77	6	10.27	0.193	8.950 5,33,69,79,81,89
78	0			8.66
79	0			8.66
80	2	10.28		9.286 /9,81
82	0	9 67		9.09 82.86
83	2	8.70		9.08 82,86
84	2	8.55		9.08 79,82
85	3	8.97	0.368	9.08 79,82,86
86	3	9.20	0.453	9.08@ 69,77,79
87	6	9.33	0.385	9.08@ 33,69,78,79,82,86
88	1	9.17		9.068 69
90	1	9.56		9.08 79
91	2	8.79		9.08 79,82
92	1	9.56		9.08 79
93	1	9.14		9.25 79
94	0			9.25
95	1	8.94		9.08 /9
97	2	8.98	0.461	9.084 79,82,86
98	1	9.14		9.25 79
99	3	9.10	0.522	9.08 79,82,86
100	3	8.83	0.543	9.25 64,79,86
101	10	9.14	0.323	9.080 30,69,78,79,81,82,83,84,86,89
102	0			9.25
103	1	9.20		9.20 /9 0.41 91
105	1	9.00		9.084 79
106	1	9.42		9.08 79
107	ī	9.08		9.08 82
108	0			9.25
109	0		o ••	9.08
111	3	8.91	0.437	(9.00 /9,02,00 0.25
112	1	9.51		9.25 79
113	1	9.69		9.25 79
114	2	9.21		9.258 79,82
15	1	9.70		9.25 79
16	5	9.50	0.260	9.41@ 5,30,69,79,81
117	1	9.62		9.41 79
10	2	9.10		9.088 /9,84 0.35 70
20	1	A.02		7,20 /7 9 25
21	1	9.66		9.41 79
.22	1	9,15		9.25 82
.23	1	9.16		9.25 79
.24	1	9.05		9.25 82
25	0			9.41
20	0			9.20
28	U 5	10.01	0.773	3 10.094 30.69.79.82.86
29	5	9.81	0.629	9.630 33,69,79,81,82,86
30	ĩ	9.54		9.63 82

(continued)

149

 Table 3b
 (continued)

NUMª	n	-LXC	SD	-LX ^G	Ref.
	005	avg		(ed 20)
131	2	9.72		9.63	79,82
132	1	9.39		9.63	79
133	0	0 00	0 7 26	0 900	33 60 70 83
135	1	9.90	0.720	9.63	79
136	5	9.54	0.547	10.098	30.78.82.86.89
137	3	9.58	0.607	9.630	79,82,86
138	3	9.55	0.520	9.63@	79,82,86
139	0			9.63	
140	1	9.98		9.80	79
141	t O	9.50	0.544	9.63	19,82,86
143	,	9 87		9.80	79
144	2	9.48		9.63	79.86
145	ō			9.80	
146	3	9.63	0.613	9.63	79,82,86
147	0			9.80	
148	1	8.73		9.80	79
149	3	9.36	0.274	9.630	79,82,86
151	U 7	0.34	0.004	9.80	70 92 96
152	L L	9.54	0.294	9,96	/7/02/00
153	ğ	9.95	0.500	10.09#	5.69.79.81.82.83.84.85.86
154	ī	10.01		9.806	79
155	5	10.22	0.333	10.418	5,30,69,79,81
156	2	9,.81		9.63	79,82
157	U 2	0 01		9.80	70 82
159	ō	3.01		9.80	/////
160	Ō			9.80	
161	0			9.80	
162	0			9.80	
163	3	9.80	0.367	9.808	33,//,/9
165	0	10.01		9.00	73
166	ő			9.96	
167	ī	9.95		9.80	79
168	0			9.96	
169	1	10.60		10.410	79
170	2	10.05	0. 304	10.15	79,86
172	5	10.07	0.304	10.15	79.82.86
173	1	9.72	0.715	10.32	82
174	3	9.83	0.435	10.156	79,82,86
175	3	9.80	0.546	10.15	79,82,86
176	2	9.73		10.15	79,82
177	۲ د	9.79	0.333	10.32	79,82,80 79,82,86
179	2	9.61	0.301	10.32	79,86
180	3	10.03	0.709	10.15	79,82,86
181	1	10.71		10.32	79
182	1	10.42		10.326	i 79
183	2	10.12		10.15	79,82
184	0	10.20	0 670	10.32	69.78.79.82.86
186	с С	10.20	0.19	10.48	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
187	2	10.01		10.32	79,86
188	1	10.23		10.48	79
189	1	10.46		10.32	79
190	1	10.64		10.32	4 /y 70
192	1	10.84		10.48	79
193	1	10.84		10.48	79
194	3	10.60	0.869	11.10	8 5,69,79
195	2	10.44		10.81	79,86

NUM ^a	n obs	-LX ^C avg	SD	-LX ^d (eq 58)	Ref.
196	2	10.54		10.65	79,86
197	ī	10.84		11.104	79
198	1	11.16		10.81	79
199	1	10.84		10.81	79
200	1	10.94		10.81	79
201	2	10.46		10.81	79,86
202	4	11.00	0.199	11.438	69,78,79,89
203	1	11.24		10.81	79
204	1	11.22		10.98	79
205	1	11.44		10.98	79
206	4	11.70	0.311	11.286	5,69,79,89
207	1	11.82		11.28	79
208	2	11.90		11.440	30,79
209	5	12.62	0.598	.12.344	5,30,69,79,89

a Ballschmitter number. b Melting points taken from Ref. 78, 90, 91, or from the general literature. c $-LX = -(\log X)$. Solubilities determined between 20 and 25 °C. d A 'g' indicates the compound was used in the solubility prediction for this column. Oils are treated as liquids.

another index:

$$\chi A = \sum_{i=1}^{k} (PQ_i/\delta_i^V) \tag{6}$$

where PQ_i is the principal quantum number of atom i and δ_i is the number of valence electrons belonging to atom i minus the number of hydrogen atoms bonded to atom i^{29} . For 2-chlorobiphenyl, the summation:

$$\chi A = \frac{(9)(2)}{3} + \frac{(3)(2)}{4} + \frac{(1)(3)}{7} = 7.9286 \tag{7}$$

would extend over the nine carbon atoms $(PQ_c = 2)$ with $\delta^V = 3$ counted valence electrons, three carbon atoms with $\delta^V = 4$, and the single chlorine atom $(PQ_{cl} = 3)$ having a valence of seven, $\delta^V = 7$.

Following the computation and tabulation of the molecular and thermodynamic input data (listed in Tables 2 to 5) multiple regression analysis was performed using the SAS[®] package. In this study, the logarithm of aqueous solubility (log X) was examined in relation to various calculated molecular size descriptors, molecular weight (MW), XVO, XA, 1/XA, and In XA. Additional terms included the thermodynamic (MP - 25) and symmetry (R) correction terms along with various geometric combinations of the symmetry and molecular size descriptors. Regression equations were limited to contain no more than three terms.

							4			
Molecular	NAME	æ	XX	AW	MPa	ç	- LX	- LX	-LX	Ref
Formula						sqo	avg	(eq 58	(ed 29)	:
C1 2H9Rr	4- RROMORI DHENYL	0.1631	8.0714	233.11	91.2	-	7.29	7.23	7.22	85
CI 2H8Rr 2	4.4'~DIRROMOBIPHENYL	0.3873	8.4762	312.00	163.0	-1	9.48	8.72	8.74	92
CI 2H7Br 3	2.4.6-TRIBROMOBIPHENYL	0.1631	8.8810	06.09E	65.5	7	9.11	9.20	9.20	92
CI 2HGR 4	2.21.5.5'-TETRABROMOBIPHENYL	0.2242	9.2857	469.80	143.5	ч	9.80	10.18	10.19	92
CI 2H5BLS	2.2.4.5.5"-PENTABROMOBIPHENYL	0.0000	9.6905	548.69	157.0	-	10.83	10.52	10.49	85
C12H4Br6	2,2',4,4',6,6'-HEXABROMOBIPHENYL	0.3873	10.0952	627.59	175.9	~	10.74	12.02	12.06	92
a Melting for 2, 2 b - LX = -	<pre>point value for 4-Bromobiphenyl t ',4,5,5' from Ref. 50, for 2,2',4' (log X). Solubilities determined t</pre>	aken fror 4',6',6' 1 at 25 °C.	n Ref. 71 from Ref.	, for 4, 92.	ъ. с. 5	4,6	\$ 2,2	5,5' £	rom Ref.	93,

Summary
Ţ
-P
en
£
ā
olybrominated
ጟ
4
þ
Ŀ

Table 5 Halogenated naphthalenes---Summary

	alogenated napitulateres - Juminary								
Molecular	Name	æ	XA	MM	MP ^a	- 1- 1		-TXC	Ref.
Formula					0	bs a	62	(eq 76)	
C10H8	Naphthalene	0.4530	6.33333	128.13	80.6	6 5.	35 0.016	5.248	43,45,73,74,77,94
C10H7C1	1-Chloronaphthalene	0.000.0	6.5952	162.62	-3.0	1 6.	49	6.76	95
CIOHICI	2Chloronaphthalene	0.0000	6.5952	162.62	59.0	1 6.	66	6.768	95
C10H6C12	1,2-Dichloronaphthalene	0.0000	6.8571	197.06	35.5	1 7.	06	7.736	95
C10H6C12	1,4-Dichloronaphthalene	0.2398	6.8571	197.06	70.0	1 7.	54	7.468	95
C10H6CF2	1,5-Dichloronaphthalene	0.2398	6.8571	197.06	107.0	1 7.	44	7.468	95
C10H6C12	1,8-Dichloronaphthalene	0.2132	6.8571	197.06	88.8	1.	26	7.498	95
C10H6C12	2, 3-Dichloronaphthalene	0.2398	6.8571	197.06	120.0	1 7.	10	7.460	95
C1 0H6C1 2	2,8-Dichloronaphthalene	0.2132	6.8571	197.06	115.0	1 7.	66	7.736	95
C10H5C13	l, 3, 7-Trichloronaphthalene	0.0000	7.1190	231.51	112.8	1 8.	30	9.636	95
CI0H5CI3	2,3,6-Trichloronaphthalene	0.0000	7.1190	231.51	90.5	Ъ. В.	88	8.636	95
C10H4C14	1,2,3,4-Tetrachloronaphthalene	0.2398	7.3810	265.95	197.0	29.	52	9.186	64,95
C10H4C14	1,2,3,5-Tetrachloronaphthalene	0.0000	7.3810	265.95	141.0	19.	60	9.478	95
C10H4C14	1,3,5,7-Tetrachloronaphthalene	0.2398	7.3810	265.95	179.5	1 9.	56	9.186	95
C10H4C14	1,3,5,8-Tetrachloronaphthalene	0.0000	7.3810	265.95	131.0	19.	25	9.476	95
C10H4C14	1,4,6,7-Tetrachloronaphthalene	0.2398	7.3810	265.95	139.0	19.	26	9.186	95
C10C18	Octachloronaphthalene	0.4530	8.4286	403.73	200.3	1 11.	44	11.668	95
C10H7Br	1-Bromonaphthalene	0.0000	6.7381	221.10	56.0	1 6.	60	7.30	75
a Values b $-LX = -$ c A 'e' h	from Ref. 96 except for Bromonap (109 X). Solubilities determine adicates value used in the solub	hthalene d between ility pro	which 1 20 and adiction	was from 25 °C. for this	71. s columr				

Ref.

RESULTS AND DISCUSSION

Correlations (Eqs. 17-78) exhibiting significant statistical merit are presented in Tables 6 to 9. The criteria employed in the decision to report a given correlation were: first, the equations reported were required to exhibit favorable standard deviation(s) and correlation coefficients and second, that the 95 percent confidence interval of the individual regression coefficients could not be inordinately large with respect to the coefficients themselves. The simple linear regressions involving only the single R or R * XA term are presented for completeness as $r^2 \le 0.40$ shows that neither term contributes appreciably to the overall aqueous solubility. In many instances, regression statistics could be favorably affected by augmentation of the data set to include additional compounds. However, in the interests of evaluating the effectiveness of the molecular and thermodynamic descriptors as predictive tools, we elected to determine regression coefficients based on only 42 HBs, 79 PCBs (denoted by the @ symbol in Tables 2 to 5) and 17 PCNs respectively. These linear and multivariate correlations were, in turn, utilized to predict mole fraction solubilities of the remaining compounds. Out of curiosity, we did regress smaller (27 HBs) and larger (166 PCBs) data sets and the derived correlations were nearly identical to ones presented in Tables 7 and 8 (see Eqs. 36 vs 37 and Eqs. 59 vs. 60).

Comparison between experimental and calculated values are listed in the next to last columns of Tables 2 to 5 for select equations. Careful examination of these four tables reveals that the derived correlations provide very reasonable estimates for the majority of compounds considered, with predictive values falling within one or two standard deviations of the computed averages. Uncertainties associated with the smaller mole fraction solubilities are believed to be on the order of $\Delta \log X = \pm 0.477$ (or less) based on inter-laboratory comparisons of duplicate values for identical compounds. As an example, the experimental values of Miller *et al*³⁰ for several chlorobenzenes differ from published solubility data of Yalkowsky and co-workers³¹

Eqn.	Series	MW	MP-25	CONST	MSE	r ²	F (P. 0
(17)	Halogenated	-0.016		-2.113	0.747	0.791	155
	Benzenes	(0.001)		(0.295)			(1,41)
(18)			-0.023	-4.777	0.737	0.797	161
			(0.002)	(0.126)	-		(1,41)
(19)		-0.009	-0.013	-3.132	0.468	0.920	231
•		(0.001)	(0.002)	(0.224)			(2,40)
(20)	Polyhalogenated	-0.014		-4.628	0.606	0.793	310
	Biphenyls	(0.001)		(0.255)			(1,81)
(21)		- •	-0.020	-7.457	0.784	0.653	152
			(0.002)	(0.149)			(1,81)
(22)		-0.010	-0.009	-5.188	0.503	0.859	243
		(0.001)	(0.001)	(0.231)			(2,80)
(23)	Chlorinated	-0.023		-3.077	0.413	0.927	189
	Naphthalenes	(0.002)		(0.386)			(1,15)
(24)	-		-0.022	-6.353	0.984	0.582	20.9
•			(0.005)	(0.470)			(1,15)
(25)		~0.022	-0.000	-3.105	0.427	0.927	88.4
		(0.003)	(0.003)	(0.450)			(2,14)

Table 6 Formula weight-Regression equations

Table 7 Halogenated benzenes-Regression equations

Eqn.	MP-25	æ	RXA	XA	LXA	1/XA	XVO	CONST	MSE	r 2	far.
	×10 ⁻²										(b, q)
(26)	-2.289							-4.78	0.734	0.798	162
(27)	(191.1)	-3.679						-4.60	1.447	0.217	(1, , 1)
		(1001)						(0.35)			(1,41)
(28)			-0.932					-4.38	1.280	0.387	26
1291			(0.183)	-1.497				(0.30)	0.370	0.949	(1,41) 761
				(0.127)				(0.61)			(1,41)
(30)					-17.229			21.33	0.423	0.933	573
(12)					(027.0)	83.056		(1.12)-23.07	0.497	0.908	(1,41) 404
						(4.134)		(0.88)			(1,41)
(3C)							-0.728	-0.62	0.442	0.927	522
	202 0-			(U3 (-			(0.032)	(0.22)	316 0	003	(1,41)
(**)	(0.089)			(0.124)				(0.57)	012.0		(2,40)
(34)	•	-1.216		-3.310				10.58	0.288	0.970	643
,		(0.231)		(0.105)				(0.48)			(2,40)
(32)			-0.261	-3.182				9.98	0.280	0.971	680
			(0.046)	(111.0)				(0.51)	C 0 1 0	200 0	(2,40)
(96)	-0.9/6 (0.080)				(0.514)			(0.78)	707.0		(2,24)
(37)	-0.931				-12.228			13.84	0.194	0.986	1441
	(0.075)				(0.520)			(0.79)			(2,40)
(38)		-1.500			-16.203			20.10	0.307	0.966	546
1001		(0.243)	-0 17 J		(0.548) -15.423			18.91	0.289	0.970	637
1401			(0.047)		(0.557)			(0.84)			(2,40)
(40)	-1.066					56.286		-17.07	0.195	0:986	1427
	(0.071)					(2.405)		(0.53)			(2,40)
(41)		-1.788				77.766		-21.51	0.350	0.955	427
		(0.274)				(3.025)		(0.66)			(04/7)
(42)			-0.388			(2.967)		(0.66)	0.322	206.0	(2,40)
(13)	-0.898						-0.519	-1.74	0.273	0.973	719
	(601.0)						1	1.2.01			

154

2011
January
28
08:26
At:
Downloaded

equations
egression
hlorinatedbiphenylsR
Polyc
Table 8

Eqn.	MP-25	ĸ	RXA	XX	LXA	1/XA	TSA (nonplanar	CONST	MSE	r 4	F (P, 0)
(44)	-1.882						•	-7.60	0.837	0.593	114
1961	(0.176)	0,1						(0.16)			(1,78)
(; ;)		-2.18)						-8.69	L.286	0.039	3.1
(46)			-0.333					-9.60	1.261	0.075	6.3
(11)			(0.132)					(0.19)			(1,78)
				10.0871				8/ • O 7	C78.0	C68.0	004
(48)				[-19.820			34.21	0.426	0.894	(T , / º) 660
(44)					(0.771)	175 1		(1.68)			(1,78)
						(116.9)		(0.79)	70.0	0.072	(1,78)
(20)							-0.038	1.14	0.411	0.902	716
1611	(, , , , , , , , , , , , , , , , , , ,						(100.0)	(0.38)		000	(1,78)
(16)	(011.0)			(0.106)				1.98	0.374	026.0	440
(23)		-1.731		-2.215				10.84	0.374	0.920	441
		(0.355)		(0.076)				(0.69)			(2,77)
(٢९)			1010 01	-2.184				10.56	0.374	0.920	440
(54)	-0.552				-16.554			27.50	0.371	0.921	450
1997	(0.108)	C30 1-			(0.925)			(1.96)			(2,77)
()		(0.347)			-19./14 (0.663)			54.1/ (1.44)	1.30/	624.0	460
(95)		,	-0.207		-19.418			33.55	0.366	0.923	461
(21)	-0.578		[(/ 00 * 0)	145.2		-25.01	0.370	0.922	452
•	(0.107)					(8.092)		(16.0)			(11,2)
(83)		-1.993				174.5		-28.52	0.363	0.924	469
1501		(0.343)	010 0-			(5.814)		(0.66)		000	(2,77)
						1.0.1		10.87-	004	668.0	97/
(09)			-0.221			171.6		-28.20	0.363	0.924	469
			(0.038)			(5.846)		(0.67)			(2,77)
(19)	-0.537 (0.104)						-0.0320 (0.0017)	-0.09	0.356	0.927	490 (2,77)
a val	ues taken	from Ref	. 50.								

Table 9 Halogenated naphthalenes-Regression equations

Downloaded At: 08:26 28 January 2011

Eqn.	MP-25	æ	RXA	XX	LXA	1/XA	0/X	CONST	MSE	۲.	6.
	×10 ⁻²										(b, Q)
(62)	-2.164							-6.35	0.984	0.582	21
(63)		-0.588						-8.12	1.520	0.004	1.0
		(2.357)	711					(0.51)	007 1	7 C U U	(1,150
(• 0)			(0.315)					(0.50)	T.470		(1,15)
(65)				-2.993				12.96	0.413	0.927	189
(99)				(077.0)	-22.054			34.89	0.358	0.945	256
(67)					(1.378)	160.82		(2.69) -31.04	0.313	0.958	(1,15) 340
1831						(8.723)	-0.742	(1.24)	0.413	0.977	(1,15) 189
1001							(0.054)	(0.48)			(1,15)
(69)	-0.044			-2.955				12.73	0.427	0.927	88 12.141
(20)	100000	1.668		-3.132				13.69	0.324	0.958	159
		(0.518)		(0.176)				(1.23)	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		(2,14)
(11)			0.245	-3.219				14.29	0.314	0.960	169
(12)	0.044		(11/0-0)	10/7-0)	-22.334			35.40	0.371	0.945	120
	(0.291)				(2,331)			(4.36)			(2,14)
(73)		1.408			-22.812			36.16	0.284	0.967	207
(14)			0.205		-23.326			37.15	0.278	0.969	218
			(0.062)		(1.137)			(2.20)		010	(2,14)
(75)	0.098					102.001		9/ · TF -	0.346	906.0	141
(16)	(*******	1.139				164.69		-31.76	0.260	0.973	250
		(114.0)				(7.388)		(1.06)			(2,14)
(77)			0.164			167.56		-32.17	0.256	0.974	258
(18)	-0.044		1				-0.732	-1.87	0.427	0.927	88
	(0.332)						(060.0)	(0.59)			(2,14)

by as much as a factor of 3 or 0.477, when expressed as $\log X$. Compound purity, equilibration time, and analysis method differ amongst the various research groups and there is no compelling reason to presume that any reported value is necessarily more reliable than another. Longer equilibration times followed by repetitive measurements would normally ensure that equilibrium was achieved. Even this standard practice may not be without question, in light of a recent study by Kim and Saleh³², which suggests that tetrachlorobenzenes can undergo chlorine atom exchange reactions when dissolved in aqueous solutions. This latter claim is stated for informational purposes so that other researchers will be aware of this possibility. Interestingly, none of the research groups which measured the solubilities listed in Tables 2 to 5 reported the appearance of additional chlorobenzene, PCB, etc. isomers in their published articles. One would naturally assume that if the exchange reaction were to occur during the normal equilibration time, researchers would be able to observe several compounds in their chromatographic/spectrophotometric analysis, and that such unusual behavior would be noted at the time the solubility data was originally published.

Inspection of Tables 7 to 9 further reveals that the better two parameter correlations either combine the melting temperature contribution with a molecular size descriptor:

Log
$$X = 13.84 - 12.228 \ln XA - 0.00931 (MP - 25)$$
 (Eq. 37)
MSE = 0.194 $r^2 = 0.986 F(2, 40) = 1441$

Log
$$X = 27.50 - 16.554 \ln XA - 0.00552 (MP - 25)$$
 (Eq. 54)
MSE = 0.370 $r^2 = 0.921 F(2, 77) = 451$

Log
$$X = -31.76 + 165.33 (1/XA) + 0.00098 (MP - 25)$$
 (Eq. 74)
MSE = 0.322 $r^2 = 0.958 F(2, 14) = 160$

or contain both molecular redundancy and molecular size terms:

Log
$$X = -28.20 + 171.6 (1/XA) - 0.221 R * XA$$
 (Eq. 60)
MSE = 0.363 $r^2 = 0.924 F(2, 77) = 469$

Log
$$X = -32.17 + 167.56 (1/XA) + 0.164 R * XA$$
 (Eq. 77)
MSE = 0.256 $r^2 = 0.974 F(2, 14) = 258$

Very little predictive accuracy is lost in replacing the (MP - 25) term with an easily calculable R * XA structural parameter. In the case of the PCN compounds, the correlation coefficient increases slightly from $r^2 = 0.958$ (Eq. 75) to $r^2 = 0.974$ (Eq. 77). The data sets do contain a sufficient number of crystalline solutes so that removal of the (MP - 25) term is statistically significant. Seventy-three solid PCBs and sixteen solid PCNs were used in the regression analysis. From a thermodynamic standpoint,

the melting temperature term is required to properly describe the solubility of crystalline compounds. Elimination of this term should not be construed as a complete departure from thermodynamics, but rather, an attempt to predict a compound's melting temperature contribution to solubility from structural information, thereby replacing a_2 (MP - 25) in our generalized correlation expression with a linear combination of molecular descriptors. Predictive expressions requiring *a priori* knowledge of the compound's melting temperature are of no use, if the required information is not readily available, as must be apparent by the large number of absent melting temperatures in Table 3. Equations 60 and 77, on the other hand, require only structural information, which can be estimated by assuming either a rigid and planar structure (PCNs) or two perpendicular phenyl rings (PCBs).

Results from the present study confirm that our generalized correlation expression does take the form:

$$\log X = a_0 + a_1 \text{ (Molecular size descriptor)}^m + a_2(\text{MP} - 25)$$
$$+ a_3 (R * \text{Molecular size descriptor}) \tag{1}$$

(with the principal quantum number modified molecular connectivity index (XA) being another viable molecular size descriptor. The correlations listed in Tables 6 to 9 are specific one and two-parameter expressions derived from our generalized form. As one might surmise from this study, the selection of predictive expression depends, to a large extent, on the predictive accuracy desired and the effort that one is willing to spend.

Acknowledgements

This investigation has been supported by the U.S. Environmental Protection Agency grant R-812657-01-1. We are also indebted to Kent State University for providing computer facilities.

References

- 1. S. S. Lande and S. Banerjee, Chemosphere 10, 751 (1981).
- 2. R. J. Baker, W. E. Acree, Jr. and C.-C. Tsai, Quant. Struct.-Act. Relat. 3, 10 (1984).
- 3. R. S. Pearlman, S. H. Yalkowsky and S. Banerjee, J. Phys. Chem. Ref. Data 13, 555 (1984).
- 4. R. J. Baker, B. J. Donelan, L. J. Peterson, W. E. Acree, Jr. and C.-C. Tsai, *Phys. Chem. Liq.* 16, 279 (1987).
- A. Opperhuizen, F. A. P. C. Gobas, J. M. D. Van der Steen and O. Hutzinger, *Environ. Sci. Technol.* 22, 638 (1988).
- 6. R. B. Hermann, J. Phys. Chem. 76, 2754 (1972).
- 7. G. L. Amidon, S. H. Yalkowsky, S. T. Anik and S. C. Valvani, J. Phys. Chem. 79, 2239 (1975).
- 8. G. L. Amidon and S. T. Anik, J. Chem. Eng. Data 26, 28 (1981).
- 9. D. W. Hawker, Environ. Sci. Technol. 23, 1250 (1989).
- 10. J. T. Edward, Can. J. Chem. 60, 2573 (1982).
- 11. N. N. Nirmalakhandan and R. E. Speece, Environ. Sci. Technol. 22, 328 (1988).
- 12. N. N. Nirmalakhandan and R. E. Speece, Environ. Sci. Technol. 23, 708 (1989).
- 13. Chr. Romming, H. M. Seip and I.-M. Aanesen Øymo, Acta Chem. Scand. A 28, 507 (1974).
- 14. B. F. Pedersen, Acta Crystallogr. B 31, 2931 (1975).
- 15. P. Kronebusch, W. B. Gleason and D. Britton, Cryst. Struct. Commun. 5, 839 (1976).
- 16. P. Singh and J. D. McKinney, Acta Crystallogr. B 35, 259 (1979).
- 17. L. D. Field, B. W. Skelton, S. Sternhell and A. H. White, Austr. J. Chem. 38, 391 (1985).

- 18. H. J. Greise, A. T. H. Lenstra, C. de Borst and G. W. H. Moes, Acta Crystallogr. C 42, 1176 (1986).
- 19. G. W. H. Moes and A. T. H. Lenstra, Toxicol. Environ. Chem. 12, 255 (1986).
- 20. S. C. Valvani, S. H. Yalkowsky and G. L. Amidon, J. Phys. Chem. 80, 829 (1976).
- 21. K. C. James, Int. J. Pharm. 21, 123 (1984).
- 22. N. Funasaki, S. Hada, S. Neya and K. Machida. J. Colloid Interface Sci. 106, 255 (1985).
- 23. A. Y. Meyer, THEOCHEM 25, 93 (1985).
- 24. A. Y. Meyer, J. Comput. Chem. 7, 144 (1986).
- 25. K. B. Lipkowitz, B. Baker and R. Larter, J. Am. Chem. Soc. 111, 7750 (1989).
- 26. G.-P. Charbonneau and Y. Delugeard, Acta Crystallogr. B 33, 1586 (1977).
- 27. L. B. Kier and L. H. Hall, J. Pharm. Sci. 72, 1170 (1983).
- 28. L. B. Kier and L. H. Hall, Chemometrics Series 9, Molecular Connectivity in Structure-Activity Analysis, (Research Studies Press, Chichester, England, 1986).
- 29. C.-C. Tsai, W. E. Acree, Jr., T. Blair, E. Gifford, L. J. Peterson and S.-T. Liao, In J. E. Turner, M. W. England, T. W. Schultz, and N. J. Kwaak eds., Proceedings of the 3rd International Workshop on Quantitative Structure-Activity Relationships in Environmental Toxicology, Knoxville, TN (1988), pp 207-210.
- 30. M. M. Miller, S. Ghodbane, S. P. Wasik, Y. B. Tewari and D. E. Martire. J. Chem. Eng. Data 29, 184 (1984).
- 31. S. H. Yalkowsky, R. J. Orr and S. C. Valvani, Ind. Eng. Chem. Fundam. 18, 351 (1979).
- 32. J. Y. Kim and F. Y. Saleh, Bull. Environ. Contam. Toxicol. 44, 813 (1990).
- 33. W. Y. Shiu and D. Mackay, J. Phys. Chem. Ref. Data 15, 911 (1986).
- 34. P. M. Gross and J. H. Saylor, J. Am. Chem. Soc. 53, 1744 (1931).
- 35. R. S. Stearns, H. Oppenheimer, E. Simon and W. D. Harkins, J. Chem. Phys. 15, 496 (1947).
- 36. H. D. Klevens, J. Phys. Colloid. Chem. 54, 283 (1950).
- 37. R. L. Bohon and W. F. Claussen, J. Am. Chem. Soc. 73, 1571 (1951).
- 38. T. J. Morrison and F. Billett, J. Chem. Soc. 3819 (1952).
- 39. D. J. Donahue and F. E. Bartell, J. Phys. Chem. 56, 480 (1952).
- 40. D. M. Alexander, J. Phys. Chem. 63, 1021 (1959).
- 41. W. Chey and G. V. Calder, J. Chem. Eng. Data 17, 199 (1972).
- 42. J. Polak and B. C.-Y. Lu, Can. J. Chem. 51, 4018 (1973).
- 43. A. Vesala, Acta Chem. Scand. A 28, 839 (1974).
- 44. D. Mackay and W. Y. Shiu, Can. J. Chem. Eng. 53, 239 (1975).
- 45. W. E. May, S. P. Wasik and D. H. Freeman, Anal. Chem. 50, 997 (1978).
- 46. F. Schwarz, Anal. Chem. 52, 10 (1980).
- 47. A. Ben-Naim and J. Wilf, J. Phys. Chem. 84, 583 (1980).
- 48. G. D. Veith, K. J. Macek, S. R. Petrocelli and J. Carroll, In Aquatic Toxicology, ASTM STP 707, (J. G. Eaton, P. R. Parrish and A. C. Hendricks, eds.) (American Society for Testing and Materials, Washington, D.C. 1980), pp 116-129.
- 49. H. Hafkenscheid and E. Tomlinson, J. Chromatogr. 218, 409 (1981).
- 50. W. J. Doucette, Ph.D. Dissertation, University of Wisconsin, Madison, WI. 1985.
- 51. D. F. Keeley, M. A. Hoffpauir and J. R. Meriwether, J. Chem. Eng. Data 33, 87 (1988).
- 52. P. M. Gross, J. H. Saylor and M. A. Gorman, J. Am. Chem. Soc. 55, 650 (1933).
- 53. L. J. Andrews and R. M. Keefer, J. Am. Chem. Soc. 72, 3113 (1950).
- 54. M. Aquan-yuen, D. Mackay and W. Y. Shiu, J. Chem. Eng. Data 24, 30 (1979).
- 55. Y. B. Tewari, M. M. Miller, S. P. Wasik and D. E. Martire, J. Chem. Eng. Data 27, 451 (1982).
- 56. S. Banerjee, Environ. Sci. Technol. 18, 587 (1984).
- 57. Von M. Kerner and H.-J. Bittrich. Z. Phys. Chemie 267, 617 (1986).
- 58. S. Banerjee, S. H. Yalkowsky and S. C. Valvani, Environ. Sci. Technol. 14, 1227 (1979).
- 59. C. T. Chiou, D. W. Schmedding and M. Manes, Environ. Sci. Technol. 16, 4 (1982).
- 60. R. D. Wauchope and F. W. Getzen, J. Chem. Eng. Data 17, 38 (1972).
- 61. D. Mackay and W. Y. Shiu, J. Phys. Chem. Ref. Data 10, 1175 (1981).
- 62. C. T. Chiou, *Environ. Sci. Technol.* 19, 57 (1985).
 63. W. E. Acree, Jr., Unpublished data.
- 64. H. Gever, A. G. Kraus, W. Klein, E. Richter and F. Korte, Chemosphere 9, 277 (1980).
- 65. A. Bharath, C. Mallard, D. Orr, G. Ozburn and A. Smith. Bull. Environ. Contam. Toxicol. 33, 133 (1984).
- 66. K. Verschueren, Handbook of Environmental Data on Organic Chemicals (Van Nostrand Reinhold Co., New York, NY. 1977).
- 67. W. Hancock and E. O. Laws. Analyst 80, 665 (1955).
- 68. R. L. Metcalf, I. P. Kapor, P. Y. Lu, C. K. Schuth and P. Sherman. Env. Health Perspect. 2, 35 (1973).

T. T. BLAIR

- 69. L. von Weil, G. Dure and K. E. Quentin, Wasser und Abwasser-Forschung 7, 169 (1974).
- 70. Y. Hashimoto, K. Tokura, K. Ozaki and W. M. J. Strachan, Chemosphere 11, 991 (1982).
- 71. R. C. Weast. ed., CRC Handbook of Chemistry and Physics, 63 ed. (CRC Press Inc., Boca Raton, FL. 1982).
- 72. L. J. Andrews and R. M. Keefer, J. Am. Chem. Soc. 71, 3644 (1949).
- 73. R. P. Eganhouse and J. A. Calder, Geochim. Cosmochim. Acta 40, 555 (1976).
- 74. D. Mackay and W. Y. Shiu, J. Chem. Eng. Data 22, 399 (1977).
- 75. M. Almgren, F. Grieser and J. K. Thomas, J. Am. Chem. Soc. 101, 279 (1979).
- 76. Y. Hashimoto, K. Tokura, H. Kishi and W. M. J. Strachan, Chemosphere 13, 881 (1984).
- 77. J. W. Billington, G.-L. Huang, F. Szeto, W. Y. Shiu and D. Mackay, Environ. Toxicol. Chem. 7, 117 (1988).
- 78. O. Hutzinger, S. Safe and V. Zitko, The Chemistry of PCB's (CRC Press, Cleveland, OH. 1974)
- 79. J. Brodsky and K. Ballschmiter, Fresenius Z. Anal. Chem. 331, 295 (1988).
- 80. T. R. Stolzenburg and A. W. Andren, Anal. Chim. Acta 151, 271 (1983).
- 81. F. M. Dunnivant and A. W. Elzerman, Chemosphere 17, 525 (1988).
- 82. T. J. Murphy, M. D. Mullin and J. A. Meyer, Environ. Sci. Technol. 21, 155 (1987).
- 83. R. Haque and D. Schmedding, Bull. Environ. Contam. Toxicol. 14, 13 (1975).
- 84. C. T. Chiou, V. H. Freed, D. W. Schmedding and R. L. Kohnert, Environ. Sci. Technol. 11, 475 (1977).
- 85. W. J. Doucette and A. W. Andren. Chemosphere 17, 243 (1988).
- S. J. Eisenreich, In R. A. Hites and S. J. Eisenreich, eds., Sources and Fates of Aquatic Pollutants, Advances in Chemistry, 216, (American Chemical Society, Washington, D.C. 1987), pp 393-469.
- 87. K. Wakita, M. Yoshimoto, S. Miyamoto and H. Watanabe. Chem. Pharm. Bull. 34, 4663 (1986).
- 88. M. M. Schantz, Ph.D. Dissertation, Georgetown University, Washington, D.C. 1986.
- 89. R. M. Dickhut, A. W. Andren and D. E. Armstrong, Environ. Sci. Technol. 20, 807 (1986).
- 90. M. D. Erikson, Analytical Chemistry of PCBs (Butterworths, Boston, MA. 1986).
- 91. A. S. Lindsey and P. J. Wagstaffe, Analyst 114, 553 (1989).
- 92. F. A. P. C. Gobas, J. M. Lahittete, G. Garofalo, W. Y. Shiu and D. Mackay, J. Pharm. Sci. 77, 265 (1988).
- 93. G. Sundstrom, O. Hutzinger, S. Safe and V. Zitko, Sci. Total Environ. 6, 15 (1976).
- 94. J. E. Gordon and R. L. Thorne, J. Phys. Chem. 71, 4390 (1967).
- 95. A. Opperhuizen, Toxicol. Environ. Chem. 15, 249 (1987).
- 96. U. A. H. Brinkman and H. G. M. Reymer, J. Chromatogr. 127, 203 (1976).